143 research outputs found

    Funciones t-migrativas t-overlap: una generalización de migratividad en funciones t-overlap

    Get PDF
    Este artículo introduce una generalización de funciones migrativas por extensión de la condición de la operación producto aplicada en las variables. Más específicamente, en lugar de exigir multiplicar la variable x por un número real alfa; en este trabajo se trabaja este número alfa con las variables de acuerdo a una t-norma. Se denomina a esta generalización función t-migrativa con respecto a tal tnorma. Luego se analizan las propiedades principales de funciones t-migrativas en funciones t-overlap y se introducen algunos métodos de construcción de este tipo de funciones.This paper introduces a generalization of migrative functions by extending the conditions of the product operation applied in the variables. We operate a number with the variables according to a t-norm instead of multiplying the variable x by this number. Such generalization, whenever it occurs, is called a t-migrative function with respect to such t-norm. Furthermore, we analyse the main properties of t-migrative and t-overlap functions. We introduce some interesting methods of construction of such functions

    IVTURS: A linguistic fuzzy rule-based classification system based on a new interval-valued fuzzy reasoning method with tuning and rule selection

    Get PDF
    Interval-valued fuzzy sets have been shown to be a useful tool for dealing with the ignorance related to the definition of the linguistic labels. Specifically, they have been successfully applied to solve classification problems, performing simple modifications on the fuzzy reasoning method to work with this representation and making the classification based on a single number. In this paper we present IVTURS, a new linguistic fuzzy rule-based classification method based on a new completely interval-valued fuzzy reasoning method. This inference process uses interval-valued restricted equivalence functions to increase the relevance of the rules in which the equivalence of the interval membership degrees of the patterns and the ideal membership degrees is greater, which is a desirable behaviour. Furthermore, their parametrized construction allows the computation of the optimal function for each variable to be performed, which could involve a potential improvement in the system’s behaviour. Additionally, we combine this tuning of the equivalence with rule selection in order to decrease the complexity of the system. In this paper we name our method IVTURS-FARC, since we use the FARC-HD method to accomplish the fuzzy rule learning process. The experimental study is developed in three steps in order to ascertain the quality of our new proposal. First, we determine both the essential role that interval-valued fuzzy sets play in the method and the need for the rule selection process. Next, we show the improvements achieved by IVTURS-FARC with respect to the tuning of the degree of ignorance when it is applied in both an isolated way and when combined with the tuning of the equivalence. Finally, the significance of IVTURS-FARC is further depicted by means of a comparison by which it is proved to outperform the results of FARC-HD and FURIA, which are two high performing fuzzy classification algorithms.This work was supported in part by the Spanish Ministry of Science and Technology under projects TIN2011-28488 and TIN2010-15055 and the Andalusian Research Plan P10-TIC-6858 and P11-TIC-7765

    Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning

    Get PDF
    Among the computational intelligence techniques employed to solve classification problems, Fuzzy Rule-Based Classification Systems (FRBCSs) are a popular tool because of their interpretable models based on linguistic variables, which are easier to understand for the experts or end-users. The aim of this paper is to enhance the performance of FRBCSs by extending the Knowledge Base with the application of the concept of Interval-Valued Fuzzy Sets (IVFSs). We consider a post-processing genetic tuning step that adjusts the amplitude of the upper bound of the IVFS to contextualize the fuzzy partitions and to obtain a most accurate solution to the problem. We analyze the goodness of this approach using two basic and well-known fuzzy rule learning algorithms, the Chi et al.’s method and the fuzzy hybrid genetics-based machine learning algorithm. We show the improvement achieved by this model through an extensive empirical study with a large collection of data-sets.This work has been supported by the Spanish Ministry of Science and Technology under projects TIN2008-06681-C06-01 and TIN2007-65981
    • …
    corecore